
Plug-ins Guide

March 15, 2017 2016.2

General Notices
Sample Code

NetSuite Inc. may provide sample code in SuiteAnswers, the Help Center, User Guides, or elsewhere
through help links. All such sample code is provided “as is” and “as available,” for use only with an
authorized NetSuite Service account, and is made available as a SuiteCloud Technology subject to the
SuiteCloud Terms of Service at www.netsuite.com/tos.

NetSuite may modify or remove sample code at any time without notice.

No Excessive Use of the Service

As the Service is a multi-tenant service offering on shared databases, customers may not use the
Service in excess of limits or thresholds that NetSuite considers commercially reasonable for the
Service. If NetSuite reasonably concludes that a customer’s use is excessive and/or will cause
immediate or ongoing performance issues for one or more of NetSuite’s other customers, NetSuite
may slow down or throttle such customer’s excess use until such time that the customer’s use stays
within reasonable limits. If a customer’s particular usage pattern requires a higher limit or threshold,
then the customer should procure a subscription to the Service that accommodates a higher limit and/
or threshold that more effectively aligns with the customer’s actual usage pattern.

Integration with Third Party Applications

NetSuite may make available to Customer certain features designed to interoperate with third party
applications. To use such features, Customer may be required to obtain access to such third party
applications from their providers, and may be required to grant NetSuite access to Customer’s
account(s) on such third party applications. NetSuite cannot guarantee the continued availability of
such Service features or integration, and may cease providing them without entitling Customer to
any refund, credit, or other compensation, if for example and without limitation, the provider of a
third party application ceases to make such third party application generally available or available
for interoperation with the corresponding Service features or integration in a manner acceptable to
NetSuite.

Copyright

This document is the property of NetSuite Inc., and may not be reproduced in whole or in part without
prior written approval of NetSuite Inc. For NetSuite trademark and service mark information, see
www.netsuite.com/portal/company/trademark.shtml.

© 2017 NetSuite Inc.

http://www.netsuite.com/tos
http://www.netsuite.com/portal/company/trademark.shtml

Table of Contents
Custom Plug-in Overview .. 1
Working with Custom Plug-ins ... 3

Developing Custom Plug-ins .. 4
Creating a Custom Plug-in Interface ... 4
Creating a Custom Plug-in Default Implementation .. 5
Adding the Default Implementation to NetSuite ... 6
Instantiating a Custom Plug-in Script in SuiteScript 2.0 .. 7
Instantiating a Custom Plug-in Script in SuiteScript 1.0 .. 9
Adding a Script that Instantiates a Custom Plug-in to NetSuite ... 12
Bundling a Custom Plug-in .. 12

Implementing Custom Plug-ins .. 13
Creating a Custom Plug-in Alternate Implementation .. 13
Adding the Alternate Implementation to NetSuite .. 14

Managing Custom Plug-in Implementations ... 15
Core Plug-in Overview .. 16
Working with Core Plug-ins ... 17

Custom Plug-in Overview 1

Custom Plug-in Overview
A custom plug-in is customizable functionality that is defined by an interface. When an interface is
defined, third party solution providers can develop custom plug-in implementations and bundle them
as part of a SuiteApp. After the SuiteApp is installed within an account, a solution implementer can
define one or more alternate implementations. These implementations allow the solution implementer
to customize the custom plug-in’s logic to suit specific business needs.

Important: The object-oriented interface is central to the plug-in model. To be more exact, a
plug-in is an interface. Plug-ins do not act as APIs. In other words, a plug-in does not expose a
class’s functions or objects. It allows a third party to override the logic defined within it’s default
implementation.

A custom plug-in interface defines the function names, their parameters, and return types. Interfaces
can be called within any third party server-side SuiteScript, with the exception of Mass Update
SuiteScripts.

Note: Functions referenced in a custom plug-in interface can only be called within the custom
plug-in implementation by the solution provider.

The solution provider defines a custom plug-in’s default logic in a default implementation. If applicable,
the solution provider may define one or more alternate implementations.

Note: Alternate implementations must be associated with a plug-in implementation type,
a standard record type in NetSuite. When a solution provider releases a custom plug-in with
alternate implementations, these alternate implementations cannot be edited by solution
implementers.

When the custom plug-in’s implementations are installed or defined within the users account, the
end-user’s NetSuite administrator activates the implementation or implementations available to each
account, and is then able to select which implementation to use. Whether a custom plug-in can use a
single or multiple implementations at one time is dependent upon the design of the custom plug-in.
When an implementation is active, function calls made within the custom plug-in script execute that
implementation’s logic.

Sample Use Case
Consider a SuiteApp that includes logic for calculating asset depreciation. The solution provider
turns this functionality into a custom plug-in. The solution implementer then overrides the default
functionality with one or more alternate implementations based on the specific accounting principles
and business requirements of the end-user.

In an alternative scenario, the solution provider releases the custom plug-in with multiple
implementations, by-passing the solution implementer role. The end-user’s NetSuite administrator
chooses (activates) which one to run based on the end-user’s needs.

What is a Custom Plug-in Type?
A custom plug-in type is a record type within NetSuite used to encapsulate a custom plug-in’s
implementations and any supporting library files. The name of a custom plug-in type is used to
distinguish its implementations from the implementations of any other custom plug-in installed on an
account.

Custom Plug-in Overview 2

The custom plug-in type is used in the following ways:

Solution Providers

■ After a solution provider defines an interface’s default implementation, they must create a custom
plug-in type record for it.

■ After a solution provider defines an alternate implementation, they must specify which custom
plug-in type the alternate implementation belongs to. They do this by creating a new plug-in
implementation record. The new plug-in implementation record is a child record to the custom
plug-in type record created for the default implementation.

Solution Implementers

■ After a solution implementer defines an alternate implementation, they must specify which custom
plug-in type the alternate implementation belongs to. They do this by creating a new plug-in
implementation record. The new plug-in implementation record is a child record to the custom
plug-in type record created for the default implementation.

Administrators

■ The Management Implementations page is used by administrators to manage all plug-ins installed
on an account. Administrators use the custom plug-in type name to distinguish a plug-in’s
implementations from the implementations of other custom plug-ins installed on an account. For
more information, see the help topic Managing Plug-ins.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4659859610.html

Working with Custom Plug-ins 3

Working with Custom Plug-ins
Important: To create your own custom plug-ins and implementation scripts, you need some
JavaScript coding experience and an understanding of SuiteScript. NetSuite recommends
writing new custom plug-in scripts in SuiteScript 2.0. To get started with SuiteScript, see and
SuiteScript 2.0.

The following sequence illustrates the basic process for developing, implementing, and managing
custom plug-ins. Note that your process flow may vary from the following diagram. See Suggested
Topics by Role for a list of help topics organized by role.

Note: This diagram is organized by role, not title. Roles do not always equate to titles. For
example, the solution implementor and administrator roles may be assigned to the same
individual or group.

Suggested Topics by Role

Solution Provider Solution Implementor Administrator

Developing Custom Plug-ins

■ Creating a Custom Plug-in Interface

■ Creating a Custom Plug-in Default
Implementation

■ Adding the Default Implementation to
NetSuite

■ If you are creating alternative
implementations:

□ Creating a Custom Plug-in Alternate
Implementation

Implementing Custom Plug-
ins

■ Creating a Custom Plug-in
Alternate Implementation

■ Adding the Alternate
Implementation to
NetSuite

Managing Custom Plug-
in Implementations
Viewing Plug-in
Implementation System
Notes

https://system.netsuite.com/app/help/helpcenter.nl?fid=book_4563537302.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4659859610.html#bridgehead_4702431116
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4659859610.html#bridgehead_4702431116
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4659859610.html#bridgehead_4702431116

Developing Custom Plug-ins 4

Solution Provider Solution Implementor Administrator

□ Adding the Alternate Implementation
to NetSuite

■ Instantiating a Custom Plug-in Script in
SuiteScript 2.0

■ Adding a Script that Instantiates a
Custom Plug-in to NetSuite

■ Bundling a Custom Plug-in

Developing Custom Plug-ins

Important: To create your own custom plug-ins and implementation scripts, you need some
JavaScript coding experience and an understanding of SuiteScript. NetSuite recommends
writing new custom plug-in scripts in SuiteScript 2.0. To get started with SuiteScript, see and
SuiteScript 2.0.

As a solution provider, the following sections must be reviewed in the following order.

■ Creating a Custom Plug-in Interface

■ Creating a Custom Plug-in Default Implementation

■ Adding the Default Implementation to NetSuite

■ If you are creating alternative implementations:

□ Creating a Custom Plug-in Alternate Implementation

□ Adding the Alternate Implementation to NetSuite

■ Instantiating a Custom Plug-in Script in SuiteScript 2.0

■ Adding a Script that Instantiates a Custom Plug-in to NetSuite

■ Bundling a Custom Plug-in

Creating a Custom Plug-in Interface
The interface is central to the custom plug-in model. A custom plug-in’s interface defines functions that
are executed within the custom plug-in script. A custom plug-in script can be any type of server-side
SuiteScript other than a Mass Update script. Note that client-side SuiteScripts cannot act as custom
plug-in scripts.

Important: Functions defined in a custom plug-in’s interface are only ever called within the
custom plug-in scripts’s code.

The functions in an interface are not fully defined. Each function includes a signature (the function
name and parameters) and a return type, but no body.

An implementation fully defines each of the interface’s functions. In other words, an implementation
contains the logic executed by the interface’s functions. You must define a default implementation of
the interface. If needed, you can also define one or more alternate implementations of the interface.

https://system.netsuite.com/app/help/helpcenter.nl?fid=book_4563537302.html

Developing Custom Plug-ins 5

Important: Each implementation must keep the signature and return type defined in the
interface.

Creating a Custom Plug-in Default Implementation
Important: To create your own custom plug-ins and implementation scripts, you need some
JavaScript coding experience and an understanding of SuiteScript. NetSuite recommends
writing new custom plug-in scripts in SuiteScript 2.0. To get started with SuiteScript, see and
SuiteScript 2.0.

An implementation fully defines an interface’s functions. In other words, an implementation contains
the logic executed by an interface’s functions. When developing a plug-in, you must define a default
implementation to define the custom plug-in script’s default logic. A default implementation is written
as an independent JavaScript file.

Note: Each function defined within the interface must be fully defined within the default
implementation.

SuiteScript 2.0 Custom Plug-in Default Implementation Example
The following is a SuiteScript 2.0 example of a default implementation:

/**

 * @NApiVersion 2.0
 * @NScriptType plugintypeimpl

 */

define(function() {
 return {

 doTheMagic: function(inputObj) {
 var operand1 = parseFloat(inputObj.operand1);

 var operand2 = parseFloat(inputObj.operand2);

 if (!isNaN(operand1) && !isNaN(operand2)) {
 return operand1 + operand2;

 }
 },

 otherMethod: function() {
 return 'foo';

 }

 }
});

SuiteScript 1.0 Custom Plug-in Default Implementation Example
The following is a SuiteScript 1.0 example of a default implementation:

function doTheMagic(inputObj) {
 var operand1 = parseFloat(inputObj.operand1);

 var operand2 = parseFloat(inputObj.operand2);

 if (!isNaN(operand1) && !isNaN(operand2)) {

 return operand1 + operand2;

 }
}

https://system.netsuite.com/app/help/helpcenter.nl?fid=book_4563537302.html

Developing Custom Plug-ins 6

function otherMethod() {
 return 'foo';

}

This sample default implementation fully defines the doTheMagic function. When called within the
custom plug-in script, this function accepts two numbers, operand1 and operand2, and adds them
together to return a result.

Adding the Default Implementation to NetSuite
To add a default implementation to NetSuite, you create a Custom Plug-in Type. A Custom Plug-in Type
is a record type within NetSuite that encapsulates a custom plug-in’s default implementation and any
supporting library files. Attach the default implementation’s JavaScript file to the Custom Plug-in Type
record to save the record. See Creating a Custom Plug-in Default Implementation before performing
the steps below.

Important: You must have Server SuiteScript enabled and SuiteScript permission to create a
custom plug-in type record.

Note: Alternate implementations are also encapsulated with a record type in NetSuite, the
New Plug-in Implementation record. The New Plug-in Implementation record is a child record to
the Custom Plug-in Type record.

To create a custom plug-in type:

1. Go to Customization > Plug-ins > Custom Plug-in Types > New.

2. Select the script file that contains your default implementation, and then click Create Custom
Plug-in Type.

3. On the custom plug-In type record, enter the following:

■ Name: Provide a user-friendly name for the custom plug-in type. This name is seen by
solution implementors creating alternate implementations of the plug-in type. It is also seen
by administrators enabling/disabling implementations of this type.

■ ID: Provide an internal ID for the custom plug-in type. If you do not provide an ID, NetSuite
provides one for you after you click Save.

■ Class Name (SuiteScript 1.0 scripts only): Provide a class name to represent the custom plug-
in. Format the class name in Pascal case (PascalCase). You, the solution developer, use the
class name to instantiate the implementation you want to use in your custom plug-in script. It
is very important that you enter a descriptive class name (for example, DemoPlugInType). See
Instantiating a Custom Plug-in Implementation for additional information.

Note: The term “class name” is a misnomer. When you create a new instance of an
implementation in your custom plug-in script, you are actually instantiating a delegate,
not an object.

■ Deployment Model: Specify how many custom plug-in type implementations an
administrator can activate at one time.

Important: The Deployment Model setting you choose affects how you write
your custom plug-in script. See Instantiating a Custom Plug-in Implementation for
additional information.

The Deployment Model field provides the following options:

Developing Custom Plug-ins 7

□ Allow Multiple: indicates multiple implementations of the interface can be activated at the
same time within an account.

□ Allow Single: indicates only one implementation of the interface can be activated at any
time within an account.

Note: The Deployment Model field does not define how many implementations a
custom plug-in can have. If this field is set to Allow Single, the custom plug-in can
still have an unlimited number of alternate implementations. However, only one
implementation can be activated at any time.

■ Status: Set to either Testing or Release. Be sure to set the status to Released before
performing the steps in Bundling a Custom Plug-in.

■ Log Level: Set to the appropriate logging level you want for the custom plug-in script.

■ Description: If you choose, provide a brief description of what the custom plug-in does.

■ Owner: This field defaults to the name of the logged in user.

■ Inactive: Set whether you want the custom plug-in type to be active or inactive.

■ On the Methods tab, add the names of the functions defined in the interface. Only enter the
function name. Do not enter parentheses or parameters.

■ On the Scripts tab, add the following:

□ Default Implementation (SuiteScript 1.0 scripts only): Browse to the default
implementation’s JavaScript file. The dropdown lists only JavaScript files uploaded to the
SuiteScript folder in the NetSuite file cabinet. You can, however, also attach your .js file
from a local directory or by URL.

□ Documentation: Add documentation written for your default implementation here. It is
strongly recommended that you write an interface definition describing the functions
defined in your interface. Solution implementors need this information to create alternate
implementations.

□ Libraries (SuiteScript 1.0 scripts only): Add library files that support your alternate
implementation here.

■ On the Unhandled Errors tab: Define which individual(s) will be notified if script errors occur.
Note that notification is based on the errors that occur in your (the solution provider's)
account. You are not going to be notified of errors that may occur in the accounts of those
who install your custom plug-in.

4. Click Save.

Instantiating a Custom Plug-in Script in SuiteScript 2.0

Important: To create your own custom plug-ins and implementation scripts, you need some
JavaScript coding experience and an understanding of SuiteScript. NetSuite recommends
writing new custom plug-in scripts in SuiteScript 2.0. To get started with SuiteScript, see and
SuiteScript 2.0.

To instantiate a custom plug-in script implementation in your code, use the plugin.loadImplementation
function. For more information, see the help topic plugin.loadImplementation(options).

There are two ways to invoke a specific implementation:

■ Using SuiteScript, pass the script implementation ID to the implementation parameter of the
plugin.loadImplementation function.

https://system.netsuite.com/app/help/helpcenter.nl?fid=book_4563537302.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4558229654.html

Developing Custom Plug-ins 8

■ Using the Manage Plug-ins page, instantiate the implementation that is currently active in the end-
user’s account.

Important: To use the Script Debugger on a script that instantiates a specific implementation,
you must add the script that instantiates a Custom Plug-in to NetSuite. For more information,
see Adding a Script that Instantiates a Custom Plug-in to NetSuite.

Instantiating a Specific Implementation using SuiteScript

Instantiate a specific implementation by passing the script implementation ID to the implementation
parameter of the plugin.loadImplementation function. The ID for the default implementation
is default. Use the plugin.findImplementations function to get a list of all the active script
implementation IDs.

The following example shows a Suitelet script that performs these tasks:

■ Use the plugin.findImplementations function to count the total number of active implementations
and get a list of all the implementation IDs for a custom plug-in script type ID named
customscript_magic_plugin.

■ Traverse each implementation, instantiating them with the plugin.loadImplementation function and
running doTheMagic, a function that is defined in each implementation.

/**
 * @NApiVersion 2.0

 * @NScriptType suitelet
 */

define(['N/plugin'], function(plugin) {

 return {
 onRequest: function(options) {

 var impls = plugin.findImplementations({
 type: 'customscript_magic_plugin'

 });

 for (i = 0; i < impls.length; i++) {
 var pl = plugin.loadImplementation({

 type: 'customscript_magic_plugin',
 implementation: impls[i]

 });

 options.response.write('impl = ' + impls[i] + ', result = ' + pl.doTheMagic({
 operand1: 10,

 operand2: 20

 }) + '\n');
 }

 }

 }

});

For more information about the plugin.findImplementations function, see the help topic
plugin.findImplementations(options).

Instantiating a Specific Implementation using the Manage Plug-ins Page

To instantiate a specific implementation using the UI, refrain from specifying the implementation
parameter in your plugin.loadImplementation call. When this parameter is not specified, NetSuite runs
the active plug-in implementation that is specified by the Manage Plug-ins page.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4558224168.html

Developing Custom Plug-ins 9

The following example shows a Suitelet script that runs doTheMagic, a custom plug-in function that
is defined in every implementation of the customscript_magic_plugin type. The implementation
parameter is not specified.

/**

 * @NApiVersion 2.0
 * @NScriptType suitelet

 */

define(['N/plugin'], function(plugin) {

 return {

 onRequest: function(options) {
 var pl = plugin.loadImplementation({

 type: 'customscript_magic_plugin'

 });

 options.response.write('impl not specified, result = ' + pl.doTheMagic({

 operand1: 10,
 operand2: 20

 }) + '\n');

 }

 }

});

To specify which script implementation to run:

1. Go to Customization > Plug-ins > Manage Plug-ins.

2. Locate your custom plug-in name, and then select the desired active plug-in from the list of
implementations.

3. Click Save.

Instantiating a Custom Plug-in Script in SuiteScript 1.0

Important: To create your own custom plug-ins and implementation scripts, you need some
JavaScript coding experience and an understanding of SuiteScript. NetSuite recommends
writing new custom plug-in scripts in SuiteScript 2.0. To get started with SuiteScript, see and
SuiteScript 2.0.

■ Instantiating a Custom Plug-in Implementation

■ Calling a Default Implementation’s Functions

■ Calling an Alternate Implementation’s Functions

■ Calling Multiple Implementations’ Functions

■ Discovering Active Implementations

Instantiating a Custom Plug-in Implementation

When you create a Custom Plug-in Type record in Adding the Default Implementation to NetSuite, you
enter a Class Name for the custom plug-in. Before you can call an implementation’s functions, you
must use the class name to create a new instance of the implementation you want to use.

https://system.netsuite.com/app/help/helpcenter.nl?fid=book_4563537302.html

Developing Custom Plug-ins 10

Note: The term “class name” is a misnomer. When you create a new instance of an
implementation, you are actually instantiating a delegate, not an object.

Instantiate the implementation with the new keyword and the Class Name from the custom plug-in
type record. The constructor has one optional parameter, implementationId. The argument you pass
in determines which implementation you instantiate. See Instantiating a Specific Implementation and
Instantiating an Implementation Based on the Deployment Model for the available arguments.

var a = new <Class Name>(implementationId);

Important: Active implementations can only be instantiated after the plug-in is installed by
an end-user and the plug-in script is executing.

There are two techniques you can use to instantiate an implementation:

■ You can directly specify the implementation your code is instantiating.

■ You can instantiate based on the Deployment Model setting on the Custom Plug-in Type record.
In other words, you can instantiate the implementations that are currently active in the end-user’s
account.

Instantiating a Specific Implementation

Pass one of the following arguments for implementationId to instantiate a specific implementation.

■ default – Pass this string argument to create an instance of the default implementation. Be sure
to enclose the argument in single quotes. See Calling a Default Implementation’s Functions for an
example.

■ The ID entered on the New Plug-in Implementation record – Pass this string argument to create an
instance of a specific alternate implementation. Be sure to enclose the argument in single quotes.
See Calling an Alternate Implementation’s Functions for an example.

Instantiating an Implementation Based on the Deployment Model

Pass one of the following arguments for implementationId to instantiate the implementations
that are currently active in the end-user’s account. The argument you use depends on the value set
for the Deployment Model field. See Adding the Default Implementation to NetSuite for additional
information.

■ No argument – If you do not pass an argument, the active implementation is instantiated. Use this
option if the Deployment Model field is set to Allow Single.

■ An array, returned by getImplementations, that contains all active implementations –
Use this option if the Deployment Model field is set to Allow Multiple. You must use the
getImplementations method to instantiate the implementations. See Discovering Active
Implementations for additional information and an example.

Calling a Default Implementation’s Functions

function useCustomPlugInType()
{

 var a = new DemoPlugInType('default');

 a.doTheMagic({

 operand1: 10,

Developing Custom Plug-ins 11

 operand2: 20
 });

 a.otherMethod();

}

Calling an Alternate Implementation’s Functions

function useCustomPlugInType()

{
 var b = new DemoPlugInType('customscriptimplementation1');

 b.doTheMagic();

 b.otherMethod();

}

Calling Multiple Implementations’ Functions

In this example, you, the solution provider, create a default implementation and an alternate
implementation for the plug-in. The alternate implementation is called by passing the ID entered on
the New Plug-in Implementation record as an argument.

Note that the Deployment Model on the custom plug-in type record must be set to Allow Multiple.

function useCustomPlugInType()

{
 var a = new DemoPlugInType('default');

 a.doTheMagic({
 operand1: 10,

 operand2: 20

 });
 a.otherMethod();

 var b = new DemoPlugInType('customscriptimplementation1');

 b.doTheMagic();

 b.otherMethod();
}

Discovering Active Implementations

After your custom plug-in is installed on an end-user’s account, the custom plug-in script has no direct
knowledge of the active implementations. If you set the Deployment Model field on the Custom Plug-
in Type record to Allow Single, this is not an issue. See Instantiating an Implementation Based on the
Deployment Model for additional information.

If Deployment Model field on the Custom Plug-in Type record is set to Allow Multiple and you do
not specify which implementation to instantiate, you must use the getImplementations method
to instantiate the implementations. The getImplementations method returns an array of active
implementations.

function discoverImplementations()

{

 var x = DemoPlugInType.getImplementations();

Developing Custom Plug-ins 12

 for (var i = 0; i < x.length; i++)
 {

 var t = new DemoPlugInType(x[i]);

 t.doTheMagic();

 t.otherMethod();
 }

}

Adding a Script that Instantiates a Custom Plug-in to
NetSuite
Create a script record for each script that instantiates your custom plug-in script. For more information,
see the procedure described in Steps for Creating a Script Record.

On the script record, you list the Custom Plug-in Type that represents your implementations.

To reference a custom plug-in type on a script record:

1. Click the Scripts tab. Then click the Custom Plug-In Types subtab.

2. In the Custom Plug-In Type field, select the Custom Plug-in Type that represents your plug-in’s
implementations.

Bundling a Custom Plug-in
Custom plug-in implementations are bundled as part of a SuiteApp. For installation instructions, see
the applicable SuiteApp documentation. For more information about creating SuiteApps, see the help
topic SuiteBundler Overview.

To bundle a custom plug-in:

1. Go to Customization > SuiteBundler > Create Bundle.

2. Provide a name for your SuiteApp (and any other optional details).

3. On the second step of the Bundle Builder, note that you do not need to use the Documentation
field to reference documentation written for the custom plug-in type (see figure below).

The documentation that goes with your custom plug-in is already attached to the Custom Plug-
in Type record, shown in Adding the Default Implementation to NetSuite. Your documentation
automatically gets bundled with the Custom Plug-in Type record.

4. In the next step of the Bundle Builder, click the Plug-ins folder (see figure below).

5. Next, click the Custom Plug-in Types folder.

6. Under Choose Objects, select the name of the custom plug-in you want to include in your
SuiteApp. The custom plug-in includes the default implementation.

If you (as a solution provider) have developed alternate implementations of your custom plug-
in, and you want to include these in the SuiteApp, select the Plug-ins > Custom Plug-in Type
Implementations folder in the Bundler Builder. All of your implementations will appear in the
Choose Objects column.

7. After bundling all other SuiteApp objects, click the Next button on the bottom of the screen.

8. In the Set Preferences step of the Bundler Builder, it is recommended that you click Lock on
Install for all objects associated with your custom plug-in type.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2932489.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N3363483.html

Implementing Custom Plug-ins 13

Implementing Custom Plug-ins
Important: To create your own custom plug-ins and implementation scripts, you need some
JavaScript coding experience and an understanding of SuiteScript. NetSuite recommends
writing new custom plug-in scripts in SuiteScript 2.0. To get started with SuiteScript, see and
SuiteScript 2.0.

Custom plug-in implementations are bundled as part of a SuiteApp. For installation instructions, see
the applicable SuiteApp documentation. For more information about creating SuiteApps, see the help
topic SuiteBundler Overview.

As a solution implementer, the following sections must be reviewed in the following order.

■ Creating a Custom Plug-in Alternate Implementation

■ Adding the Alternate Implementation to NetSuite

Creating a Custom Plug-in Alternate Implementation
Review the custom plug-in type's default implementation and any documentation provided by the
solution provider.

To download a copy of the default implementation:

1. Go to Customization > Plug-ins > Custom Plug-in Type.

2. Click View next to the custom plug-in type you want to work with.

3. On the Methods tab of this page, notice the names of the methods exposed in the default
implementation. In your alternate implementation, you are required to use the same method
names.

4. On the Scripts tab, click the download link next to the default implementation file. Review this
file to understand the default logic for each method.

5. Click the download link next to the documentation file, if documentation has been provided by
the solution provider. The documentation may provide additional information that explains what
the methods are used for and what they return.

You can create a JavaScript file and re-implement the functions defined in the default implementation
by creating an alternate implementation. The alternate implementation overrides the custom plug-
in script’s default logic. You cannot change the function signatures and return types defined in the
default implementation. You can only override the logic within the function bodies. Each function that
is defined in the default implementation must be fully defined in the alternative implementation.

SuiteScript 2.0 Custom Plug-in Alternate Implementation
Example
The following is a SuiteScript 2.0 example of a alternate implementation to the SuiteScript 2.0 default
implementation example shown in Creating a Custom Plug-in Default Implementation:

/**

 * @NApiVersion 2.0

 * @NScriptType plugintypeimpl

 */
define(function() {

https://system.netsuite.com/app/help/helpcenter.nl?fid=book_4563537302.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N3363483.html

Implementing Custom Plug-ins 14

 return {
 doTheMagic: function(inputObj) {

 return 1234;

 },

 otherMethod: function() {
 return 'foo';

 }

 }

});

SuiteScript 1.0 Custom Plug-in Alternate Implementation
Example
The following is a SuiteScript 1.0 example of a alternate implementation to the SuiteScript 1.0 default
implementation example shown in Creating a Custom Plug-in Default Implementation:

function doTheMagic(inputObj) {

 return 1234;
}
function otherMethod() {

 return 'foo';

}

This sample default implementation fully defines the doTheMagic function. When called within the a
script, this function always returns a result of 1234. This is different from the default implementation,
which accepts two numbers as parameters, adds them together, then returns the result.

Adding the Alternate Implementation to NetSuite
Alternate implementations are encapsulated by the New Plug-in Implementation record type. The
New Plug-in Implementation record is a child record to the Custom Plug-in Type record. See Creating a
Custom Plug-in Alternate Implementation before performing the steps in this procedure.

To create a New Plug-in Implementation record:

1. Go to Customization > Plug-ins > Plug-in Implementations > New.

2. Select the script file that contains your alternate implementation, and then click Create Plug-in
Implementation.

3. On the New Plug-In Implementation record, enter the following:

■ Name: Provide a user-friendly name for your implementation. This name will appear on the
Manage Plug-In Implementations page that administrators use to activate/deactivate the
implementations in their account. See Managing Custom Plug-in Implementations for details.

■ ID: Provide an internal ID for the implementation. If you do not provide an ID, NetSuite
provides one for you when you click Save.

■ Status: Set to either Testing or Release. Set the status to Released when you are ready to
have the implementation accessible in a production environment.

■ Log Level: Set to the appropriate logging level you want for the script.

■ Description: If you choose, provide a brief description of what the alternate implementation
includes.

Implementing Custom Plug-ins 15

■ Owner: This field defaults to the name of the logged in user.

■ Inactive: Set whether you want the custom plug-in type to be active or inactive.

■ On the Scripts tab, enter the following:

□ Implementation (SuiteScript 1.0 scripts only): Select the script file that includes your
alternate implementation of the custom plug-in type.

□ Libraries (SuiteScript 1.0 scripts only): If you have a library file that contains utility
functions for your alternate implementation, add the library file(s) here.

■ On the Unhandled Errors tab, define which individual(s) are notified if script errors occur. By
default, the Notify Script Owner check box is selected.

4. Click Save.

You can access a list of all your implementations by going to Customization > Plug-ins > Manage Plug-
ins.

Managing Custom Plug-in Implementations
As a NetSuite administrator, you may install a SuiteApp that includes a custom plug-in. If you do
nothing, the logic within the custom plug-in’s default implementation runs automatically in the context
of the SuiteApp.

However, if the developers in your company choose to create alternate implementations of the custom
plug-in, you use the Manage Plug-Ins page to enable one or more of their implementations. To access
this page, go to Customization > Plug-ins > Manage Plug-ins.

Important: You must have Server SuiteScript enabled in your account to access to the
Manage Plug-In Implementations page.

Custom plug-in types that allow multiple implementations to be enabled and deployed have a
checkbox next to each alternate implementation.

Custom plug-in types that limit implementation deployments to one have a dropdown field. In this
field you select only one implementation to enable and deploy. Note that there may be several
implementations to choose from, but only one can be selected.

After enabling your implementations, click Save.

Important: The solution provider that created the custom plug-in type defines whether
single or multiple deployments are supported. As the administrator, you select which
implementation/deployment you want enabled in your NetSuite account.

Core Plug-in Overview 16

Core Plug-in Overview
A plug-in is functionality, defined by an interface, that can be customized. After the plug-in is installed, a
third party can override the plug-in’s default logic with logic that suits its specific needs. The third party
does this by defining alternate implementations of the interface

Important: The object-oriented interface is central to the plug-in model. To be more exact, a
plug-in is an interface. Plug-ins do not act as APIs. In other words, a plug-in does not expose a
class’s functions or objects. It merely allows a third party to override the logic defined within its
default implementation.

NetSuite develops core plug-ins and releases them, typically as part of a major release, to partners or
customers. A core plug-in’s interface defines functions that are executed within the core NetSuite code.

Note: Functions defined in a core plug-in’s interface are only ever called within the core
NetSuite code by core NetSuite developers.

NetSuite releases each core plug-in with a default implementation. Note that the logic defined in the
default implementation may or may not be available to end users. If applicable, NetSuite may also
release a core plug-in with one or more alternate implementations.

After a plug-in is installed within an account, the solution implementor can define one or more
alternate implementations. These alternate implementations allow the solution implementor to
customize the core plug-in’s logic to suit specific needs. To accommodate this process, NetSuite
provides an interface definition that describes the name, parameters, and return type of each function
defined in the core plug-in’s interface.

Note: Alternate implementations can only be edited by their owners. When NetSuite releases
a core plug-in with alternate implementations, these alternate implementations cannot be
edited by third parties.

When a plug-in’s implementations are ready to be utilized, the end-user’s NetSuite administrator
activates the implementation or implementations available to each account. Whether a plug-in can
use a single or multiple implementations at one time is dependent upon the design of the plug-in.
When an implementation is active, function calls made within the core NetSuite code execute that
implementation’s logic.

Working with Core Plug-ins 17

Working with Core Plug-ins
■ Available Core Plug-ins

■ Creating a New Plug-in Implementation

■ Debugging a Core Plug-in Implementation

A plug-in is functionality defined through an interface. After a plug-in has been installed, a third party
can replace the plug-in’s default logic with logic that suits its specific needs. For more information
about managing plug-ins, see the help topic Managing Plug-ins

Core plug-ins are developed and released by NetSuite. The logic defined in a core plug-in executes
within the core NetSuite code. See Core Plug-in Overview for additional information.

Each core plug-in is released with documentation written specifically for that plug-in. Refer to your
specific core plug-in’s help for details needed to install, use and customize the plug-in. The Available
Core Plug-ins table links to the help for each generally available core plug-in.

Available Core Plug-ins

Name Description

Adds custom general ledger postings on scriptable transactions.

Sets up automated inbound email processing to trigger SuiteScript.

Creating a New Plug-in Implementation
The following is a generic procedure to create a new plug-in implementation in NetSuite. For details on
how to create a new implementation for your specific core plug-in, see the applicable help topic listed
under Available Core Plug-ins.

To create a plug-in implementation, you create the plug-in implementation script file. Then, you upload
the script file and other utility files as required to create the plug-in implementation.

To create a new plug-in implementation:

1. Review the interface description for your core plug-in.

2. Create a JavaScript file for the implementation. Use this file to define the logic for the methods
listed in the interface description.

3. In the UI, click Customization > Plug-ins > Plug-in Implementations > New.

4. In the Script File field, open the script file or add a new file.

5. Click Create Plug-in Implementation.

6. On the Select Plug-in Type page, click the link for the plug-in type that you want to implement.

7. On the New Plug-in Implementation page, enter the following information.

Option Description

Name User-friendly name for the implementation. The plug-in implementation
appears in the following locations:

■ Manage Plug-ins page. Page used by administrators to enable/disable the
plug-in implementation in their account.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4659859610.html

Working with Core Plug-ins 18

Option Description

■ Bundle Builder. Select this name in the Bundle Builder to distribute the
plug-in implementation to other accounts.

ID Internal ID for the implementation for use in scripting. If you do not provide
an ID, NetSuite provides one for you when you click Save.

Status Current status for the implementation. Choose Testing to have the
implementation accessible to the owner of the implementation.
Choose Released to have the implementation accessible to all accounts in a
production environment.

Log Level Logging level you want for the script. Select Debug, Audit, Error, or
Emergency. These messages appear on the Execution Log subtab for the
plug-in implementation.

Execute As Role Role that the script runs as. The Execute As Role field provides role-based
granularity in terms of the permissions and restrictions of the executing
script. The Current Role value indicates that the script executes with the
permissions of the currently logged-in NetSuite user.

Note: You can create the custom role during testing to test the
plug-in implementation with the proper role. The role requires the
SuiteScript permission. You can then bundle the custom role to
distribute it with the plug-in implementation. See Test the Plug-in
Implementation and Bundle the Plug-in Implementation.

Description Optional description of the implementation. The description appears for the
implementation on the Plug-In Implementations page.

Owner User account that owns the implementation. Default is the name of the
logged in user.

Inactive Indicates the plug-in implementation does not run in the account. Inactivate
a plug-in implementation, for example, to temporarily disable it for testing
purposes.

Important: You cannot execute an implementation as Administrator. You must choose
from one of the custom roles listed in the Execute As Role field. Note that System
Administrator is a custom role.

8. On the Scripts subtab, in the Implementation list, change the JavaScript file that contains the
implementation of the plug-in, if required.

9. On the Scripts subtab, in the Library Script File list, select any utility script files or supporting
library files that are required by the plug-in script file..

10. On the Unhandled Errors subtab, specify who to notify if script errors occur.

■ To notify the user that is logged in and running the script, check the Notify Current User box.

■ To notify the script owner, check the Notify Script Owner box. The Notify Script Owner box is
checked by default.

■ To notify all administrators, check the Notify All Admins box.

■ To notify a group about the error, select the group to notify. Only existing groups that were
set up in are available.

■ Enter individual email addresses in the Notify Emails field. Separate multiple email addresses
 with a semi-colon.

11. Click Save. Next, you configure the plug-in implementation, enable it, and test it.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3996454261.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3996454261.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3996454526.html

Working with Core Plug-ins 19

You can access the list of implementations by going to Customization > Plug-ins > Plug-in
Implementations.

Debugging a Core Plug-in Implementation
You can use the SuiteScript Debugger to test your core plug-in implementations.

Core plug-in implementations are debugged in the same way deployed scripts are debugged. To test
your implementation in the Debugger, you must first create a Plug-in Implementation record and set
the status to Testing. See Creating a New Plug-in Implementation and your specific core plug-in’s help
for additional information.

When you are ready to test your implementation, see the help topic Deployed Debugging for
instructions.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N3017069.html

	Table of Contents
	Custom Plug-in Overview
	Working with Custom Plug-ins
	Developing Custom Plug-ins
	Creating a Custom Plug-in Interface
	Creating a Custom Plug-in Default Implementation
	Adding the Default Implementation to NetSuite
	Instantiating a Custom Plug-in Script in SuiteScript 2.0
	Instantiating a Custom Plug-in Script in SuiteScript 1.0
	Adding a Script that Instantiates a Custom Plug-in to NetSuite
	Bundling a Custom Plug-in

	Implementing Custom Plug-ins
	Creating a Custom Plug-in Alternate Implementation
	Adding the Alternate Implementation to NetSuite

	Managing Custom Plug-in Implementations

	Core Plug-in Overview
	Working with Core Plug-ins

